Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Signal Transduct Target Ther ; 7(1): 255, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1960331

ABSTRACT

SARS-CoV-2, the culprit pathogen of COVID-19, elicits prominent immune responses and cytokine storms. Intracellular Cl- is a crucial regulator of host defense, whereas the role of Cl- signaling pathway in modulating pulmonary inflammation associated with SARS-CoV-2 infection remains unclear. By using human respiratory epithelial cell lines, primary cultured human airway epithelial cells, and murine models of viral structural protein stimulation and SARS-CoV-2 direct challenge, we demonstrated that SARS-CoV-2 nucleocapsid (N) protein could interact with Smad3, which downregulated cystic fibrosis transmembrane conductance regulator (CFTR) expression via microRNA-145. The intracellular Cl- concentration ([Cl-]i) was raised, resulting in phosphorylation of serum glucocorticoid regulated kinase 1 (SGK1) and robust inflammatory responses. Inhibition or knockout of SGK1 abrogated the N protein-elicited airway inflammation. Moreover, N protein promoted a sustained elevation of [Cl-]i by depleting intracellular cAMP via upregulation of phosphodiesterase 4 (PDE4). Rolipram, a selective PDE4 inhibitor, countered airway inflammation by reducing [Cl-]i. Our findings suggested that Cl- acted as the crucial pathological second messenger mediating the inflammatory responses after SARS-CoV-2 infection. Targeting the Cl- signaling pathway might be a novel therapeutic strategy for COVID-19.


Subject(s)
COVID-19 , Chlorine/metabolism , MicroRNAs , Animals , COVID-19/genetics , Humans , Inflammation/pathology , Mice , MicroRNAs/metabolism , Nucleocapsid Proteins , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , SARS-CoV-2
2.
J Immunol ; 207(5): 1275-1287, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1771322

ABSTRACT

The airway epithelial cells (AECs) lining the conducting passageways of the lung secrete a variety of immunomodulatory factors. Among these, PGE2 limits lung inflammation and promotes bronchodilation. By contrast, IL-6 drives intense airway inflammation, remodeling, and fibrosis. The signaling that differentiates the production of these opposing mediators is not understood. In this study, we find that the production of PGE2 and IL-6 following stimulation of human AECs by the damage-associated molecular pattern extracellular ATP shares a common requirement for Ca2+ release-activated Ca2+ (CRAC) channels. ATP-mediated synthesis of PGE2 required activation of metabotropic P2Y2 receptors and CRAC channel-mediated cytosolic phospholipase A2 signaling. By contrast, ATP-evoked synthesis of IL-6 occurred via activation of ionotropic P2X receptors and CRAC channel-mediated calcineurin/NFAT signaling. In contrast to ATP, which elicited the production of both PGE2 and IL-6, the uridine nucleotide, UTP, stimulated PGE2 but not IL-6 production. These results reveal that human AECs employ unique receptor-specific signaling mechanisms with CRAC channels as a signaling nexus to regulate release of opposing immunomodulatory mediators. Collectively, our results identify P2Y2 receptors, CRAC channels, and P2X receptors as potential intervention targets for airway diseases.


Subject(s)
Dinoprostone/metabolism , Inflammation/immunology , Interleukin-6/metabolism , Respiratory Mucosa/metabolism , Adenosine Triphosphate/pharmacokinetics , Alarmins/metabolism , Calcium Release Activated Calcium Channels/metabolism , Cells, Cultured , Humans , Immunomodulation , Interleukin-6/genetics , NFATC Transcription Factors/metabolism , Phospholipases A2/metabolism , Receptors, Purinergic P2X/metabolism , Respiratory Mucosa/pathology , Signal Transduction , Uracil Nucleotides/metabolism
3.
J Infect Dis ; 224(8): 1357-1361, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1493824

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 ) initiates entry into airway epithelia by binding its receptor, angiotensin-converting enzyme 2 (ACE2). METHODS: To explore whether interindividual variation in ACE2 abundance contributes to variability in coronavirus disease 2019 (COVID-19) outcomes, we measured ACE2 protein abundance in primary airway epithelial cultures derived from 58 human donor lungs. RESULTS: We found no evidence for sex- or age-dependent differences in ACE2 protein expression. Furthermore, we found that variations in ACE2 abundance had minimal effects on viral replication and induction of the interferon response in airway epithelia infected with SARS-CoV-2. CONCLUSIONS: Our results highlight the relative importance of additional host factors, beyond viral receptor expression, in determining COVID-19 lung disease outcomes.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/analysis , Biological Variation, Population , Bronchi/cytology , Bronchi/pathology , Bronchi/virology , COVID-19/virology , Epithelial Cells , Female , Humans , Male , Primary Cell Culture , Receptors, Coronavirus/analysis , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Sex Factors , Virus Internalization
4.
PLoS One ; 16(10): e0254985, 2021.
Article in English | MEDLINE | ID: covidwho-1448572

ABSTRACT

BACKGROUND: The goal of this study was to determine if IL-22:Fc would Acute Respiratory Distress Syndrome (ARDS). SUMMARY BACKGROUND DATA: No therapies exist for ARDS and treatment is purely supportive. Interleukin-22 (IL-22) plays an integral component in recovery of the lung from infection. IL-22:Fc is a recombinant protein with a human FC immunoglobulin that increases the half-life of IL-22. STUDY DESIGN: ARDS was induced in C57BL/6 mice with intra-tracheal lipopolysaccharide (LPS) at a dose of 33.3 or 100 ug. In the low-dose LPS group (LDG), IL-22:FC was administered via tail vein injection at 30 minutes (n = 9) and compared to sham (n = 9). In the high-dose LPS group (HDG), IL-22:FC was administered (n = 11) then compared to sham (n = 8). Euthanasia occurred after bronchioalveolar lavage (BAL) on post-injury day 4. RESULTS: In the LDG, IL-22:FC resulted in decreased protein leak (0.15 vs. 0.25 ug/uL, p = 0.02). BAL protein in animals receiving IL-22:Fc in the HDG was not different. For the HDG, animals receiving IL-22:Fc had lower BAL cell counts (539,636 vs 3,147,556 cells/uL, p = 0.02). For the HDG, IL-6 (110.6 vs. 527.1 pg/mL, p = 0.04), TNF-α (5.87 vs. 25.41 pg/mL, p = 0.04), and G-CSF (95.14 vs. 659.6, p = 0.01) levels were lower in the BAL fluid of IL-22:Fc treated animals compared to sham. CONCLUSIONS: IL-22:Fc decreases lung inflammation and lung capillary leak in ARDS. IL-22:Fc may be a novel therapy for ARDS.


Subject(s)
Immunoglobulin Fc Fragments/pharmacology , Interleukins/pharmacology , Lung Injury/drug therapy , Pneumonia/drug therapy , Respiratory Distress Syndrome/drug therapy , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Female , Lipopolysaccharides/toxicity , Lung Injury/pathology , Lymphocyte Count , Lymphocytes/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Pneumonia/pathology , Receptors, Interleukin/metabolism , Recombinant Proteins/pharmacology , Respiratory Distress Syndrome/pathology , Respiratory Mucosa/pathology
5.
Cells ; 10(7)2021 06 26.
Article in English | MEDLINE | ID: covidwho-1389304

ABSTRACT

The lungs are affected by illnesses including asthma, chronic obstructive pulmonary disease, and infections such as influenza and SARS-CoV-2. Physiologically relevant models for respiratory conditions will be essential for new drug development. The composition and structure of the lung extracellular matrix (ECM) plays a major role in the function of the lung tissue and cells. Lung-on-chip models have been developed to address some of the limitations of current two-dimensional in vitro models. In this review, we describe various ECM substitutes utilized for modeling the respiratory system. We explore the application of lung-on-chip models to the study of cigarette smoke and electronic cigarette vapor. We discuss the challenges and opportunities related to model characterization with an emphasis on in situ characterization methods, both established and emerging. We discuss how further advancements in the field, through the incorporation of interstitial cells and ECM, have the potential to provide an effective tool for interrogating lung biology and disease, especially the mechanisms that involve the interstitial elements.


Subject(s)
Lab-On-A-Chip Devices , Lung Diseases/pathology , Lung/physiology , Regeneration/physiology , Respiratory Mucosa/cytology , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , Cells, Cultured , Extracellular Matrix/physiology , Humans , Lung/cytology , Lung/pathology , Lung Diseases/physiopathology , Lung Diseases/therapy , Models, Biological , Respiratory Mucosa/pathology , Respiratory Mucosa/physiology , SARS-CoV-2/pathogenicity , Tissue Culture Techniques/instrumentation , Tissue Culture Techniques/methods
6.
Viruses ; 13(9)2021 08 28.
Article in English | MEDLINE | ID: covidwho-1374539

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) is a host ectopeptidase and the receptor for the SARS-CoV-2 virus, albeit virus-ACE2 interaction goes far beyond viral entry into target cells. Controversial data exists linking viral infection to changes in ACE2 expression and function, which might influence the subsequent induction of an inflammatory response. Here, we tested the significance of soluble ACE2 enzymatic activity longitudinally in nasopharyngeal swabs and plasma samples of SARS-CoV-2 infected patients, along with the induction of inflammatory cytokines. Release of soluble functional ACE2 increases upon SARS-CoV-2 infection in swabs and plasma of infected patients, albeit rapidly decreasing during infection course in parallel with ACE2 gene expression. Similarly, SARS-CoV-2 infection also induced the expression of inflammatory cytokines. These changes positively correlated with the viral load. Overall, our results demonstrate the existence of mechanisms by which SARS-CoV-2 modulates ACE2 expression and function, intracellular viral sensing and subsequent inflammatory response, offering new insights into ACE2 dynamics in the human upper respiratory tract and pointing towards soluble ACE2 levels as a putative early biomarker of infection severity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Biomarkers , COVID-19/diagnosis , COVID-19/immunology , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Gene Expression , Host-Pathogen Interactions/immunology , Humans , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , SARS-CoV-2/isolation & purification , Viral Load
8.
Cell ; 184(18): 4713-4733.e22, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1343153

ABSTRACT

SARS-CoV-2 infection can cause severe respiratory COVID-19. However, many individuals present with isolated upper respiratory symptoms, suggesting potential to constrain viral pathology to the nasopharynx. Which cells SARS-CoV-2 primarily targets and how infection influences the respiratory epithelium remains incompletely understood. We performed scRNA-seq on nasopharyngeal swabs from 58 healthy and COVID-19 participants. During COVID-19, we observe expansion of secretory, loss of ciliated, and epithelial cell repopulation via deuterosomal cell expansion. In mild and moderate COVID-19, epithelial cells express anti-viral/interferon-responsive genes, while cells in severe COVID-19 have muted anti-viral responses despite equivalent viral loads. SARS-CoV-2 RNA+ host-target cells are highly heterogenous, including developing ciliated, interferon-responsive ciliated, AZGP1high goblet, and KRT13+ "hillock"-like cells, and we identify genes associated with susceptibility, resistance, or infection response. Our study defines protective and detrimental responses to SARS-CoV-2, the direct viral targets of infection, and suggests that failed nasal epithelial anti-viral immunity may underlie and precede severe COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity , SARS-CoV-2/physiology , Severity of Illness Index , Adult , Aged , Bystander Effect , COVID-19/genetics , Cohort Studies , Female , Humans , Male , Middle Aged , Nasopharynx/pathology , Nasopharynx/virology , RNA, Viral/analysis , RNA, Viral/genetics , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Transcription, Genetic , Viral Load
9.
mBio ; 12(4): e0097021, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1338834

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused significant morbidity and mortality on a global scale. The etiologic agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), initiates host cell entry when its spike protein (S) binds to its receptor, angiotensin-converting enzyme 2 (ACE2). In airway epithelia, the spike protein is cleaved by the cell surface protease TMPRSS2, facilitating membrane fusion and entry at the cell surface. This dependence on TMPRSS2 and related proteases suggests that protease inhibitors might limit SARS-CoV-2 infection in the respiratory tract. Here, we tested two serine protease inhibitors, camostat mesylate and nafamostat mesylate, for their ability to inhibit entry of SARS-CoV-2 and that of a second pathogenic coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV). Both camostat and nafamostat reduced infection in primary human airway epithelia and in the Calu-3 2B4 cell line, with nafamostat exhibiting greater potency. We then assessed whether nafamostat was protective against SARS-CoV-2 in vivo using two mouse models. In mice sensitized to SARS-CoV-2 infection by transduction with human ACE2, intranasal nafamostat treatment prior to or shortly after SARS-CoV-2 infection significantly reduced weight loss and lung tissue titers. Similarly, prophylactic intranasal treatment with nafamostat reduced weight loss, viral burden, and mortality in K18-hACE2 transgenic mice. These findings establish nafamostat as a candidate for the prevention or treatment of SARS-CoV-2 infection and disease pathogenesis. IMPORTANCE The causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), requires host cell surface proteases for membrane fusion and entry into airway epithelia. We tested the hypothesis that inhibitors of these proteases, the serine protease inhibitors camostat and nafamostat, block infection by SARS-CoV-2. We found that both camostat and nafamostat reduce infection in human airway epithelia, with nafamostat showing greater potency. We then asked whether nafamostat protects mice against SARS-CoV-2 infection and subsequent COVID-19 lung disease. We performed infections in mice made susceptible to SARS-CoV-2 infection by introducing the human version of ACE2, the SARS-CoV-2 receptor, into their airway epithelia. We observed that pretreating these mice with nafamostat prior to SARS-CoV-2 infection resulted in better outcomes, in the form of less virus-induced weight loss, viral replication, and mortality than that observed in the untreated control mice. These results provide preclinical evidence for the efficacy of nafamostat in treating and/or preventing COVID-19.


Subject(s)
Benzamidines/pharmacology , Esters/pharmacology , Guanidines/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Cells, Cultured , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/drug effects , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
10.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-1323266

ABSTRACT

Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and causes remodeling of the small airways. However, the exact smoke-induced effects on the different types of small airway epithelial cells (SAECs) are poorly understood. Here, using air-liquid interface (ALI) cultures, single-cell RNA-sequencing reveals previously unrecognized transcriptional heterogeneity within the small airway epithelium and cell type-specific effects upon acute and chronic cigarette smoke exposure. Smoke triggers detoxification and inflammatory responses and aberrantly activates and alters basal cell differentiation. This results in an increase of inflammatory basal-to-secretory cell intermediates and, particularly after chronic smoke exposure, a massive expansion of a rare inflammatory and squamous metaplasia associated KRT6A+ basal cell state and an altered secretory cell landscape. ALI cultures originating from healthy non-smokers and COPD smokers show similar responses to cigarette smoke exposure, although an increased pro-inflammatory profile is conserved in the latter. Taken together, the in vitro models provide high-resolution insights into the smoke-induced remodeling of the small airways resembling the pathological processes in COPD airways. The data may also help to better understand other lung diseases including COVID-19, as the data reflect the smoke-dependent variable induction of SARS-CoV-2 entry factors across SAEC populations.


Subject(s)
Airway Remodeling/drug effects , Alveolar Epithelial Cells/drug effects , Cigarette Smoking/adverse effects , Epithelial Cells/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Cell Differentiation/drug effects , Cells, Cultured , Cigarette Smoking/metabolism , Epithelial Cells/drug effects , Humans , Neoplasms, Basal Cell/metabolism , Primary Cell Culture , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Smoke , Smoking/adverse effects , Smoking/metabolism
11.
Nat Commun ; 12(1): 4354, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1315596

ABSTRACT

Understanding how SARS-CoV-2 spreads within the respiratory tract is important to define the parameters controlling the severity of COVID-19. Here we examine the functional and structural consequences of SARS-CoV-2 infection in a reconstructed human bronchial epithelium model. SARS-CoV-2 replication causes a transient decrease in epithelial barrier function and disruption of tight junctions, though viral particle crossing remains limited. Rather, SARS-CoV-2 replication leads to a rapid loss of the ciliary layer, characterized at the ultrastructural level by axoneme loss and misorientation of remaining basal bodies. Downregulation of the master regulator of ciliogenesis Foxj1 occurs prior to extensive cilia loss, implicating this transcription factor in the dedifferentiation of ciliated cells. Motile cilia function is compromised by SARS-CoV-2 infection, as measured in a mucociliary clearance assay. Epithelial defense mechanisms, including basal cell mobilization and interferon-lambda induction, ramp up only after the initiation of cilia damage. Analysis of SARS-CoV-2 infection in Syrian hamsters further demonstrates the loss of motile cilia in vivo. This study identifies cilia damage as a pathogenic mechanism that could facilitate SARS-CoV-2 spread to the deeper lung parenchyma.


Subject(s)
COVID-19/pathology , Cilia/ultrastructure , Mucociliary Clearance/physiology , SARS-CoV-2 , Animals , Axoneme , Basal Bodies , Cilia/metabolism , Cilia/pathology , Cricetinae , Cytokines , Epithelial Cells/pathology , Forkhead Transcription Factors/metabolism , Humans , Lung/pathology , Male , Mesocricetus , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Virus Replication
12.
Int J Mol Sci ; 21(20)2020 Oct 09.
Article in English | MEDLINE | ID: covidwho-1298152

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels responsible for rapid neural and neuromuscular signal transmission. Although it is well documented that 16 subunits are encoded by the human genome, their presence in airway epithelial cells (AECs) remains poorly understood, and contribution to pathology is mainly discussed in the context of cancer. We analysed nAChR subunit expression in the human lungs of smokers and non-smokers using transcriptomic data for whole-lung tissues, isolated large AECs, and isolated small AECs. We identified differential expressions of nAChRs in terms of detection and repartition in the three modalities. Smoking-associated alterations were also unveiled. Then, we identified an nAChR transcriptomic print at the single-cell level. Finally, we reported the localizations of detectable nAChRs in bronchi and large bronchioles. Thus, we compiled the first complete atlas of pulmonary nAChR subunits to open new avenues to further unravel the involvement of these receptors in lung homeostasis and respiratory diseases.


Subject(s)
Lung/metabolism , Protein Subunits/metabolism , Receptors, Nicotinic/metabolism , Adult , Age Factors , Cell Cycle , Epithelial Cells/metabolism , Gene Expression Regulation , Humans , Protein Subunits/chemistry , Protein Subunits/genetics , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Signal Detection, Psychological , Smoking , Transcription, Genetic
13.
J Allergy Clin Immunol ; 147(6): 2083-2097.e6, 2021 06.
Article in English | MEDLINE | ID: covidwho-1272498

ABSTRACT

BACKGROUND: Excessive inflammation triggered by a hitherto undescribed mechanism is a hallmark of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and is associated with enhanced pathogenicity and mortality. OBJECTIVE: Complement hyperactivation promotes lung injury and was observed in patients suffering from Middle East respiratory syndrome-related coronavirus, SARS-CoV-1, and SARS-CoV-2 infections. Therefore, we investigated the very first interactions of primary human airway epithelial cells on exposure to SARS-CoV-2 in terms of complement component 3 (C3)-mediated effects. METHODS: For this, we used highly differentiated primary human 3-dimensional tissue models infected with SARS-CoV-2 patient isolates. On infection, viral load, viral infectivity, intracellular complement activation, inflammatory mechanisms, and tissue destruction were analyzed by real-time RT-PCR, high content screening, plaque assays, luminex analyses, and transepithelial electrical resistance measurements. RESULTS: Here, we show that primary normal human bronchial and small airway epithelial cells respond to SARS-CoV-2 infection by an inflated local C3 mobilization. SARS-CoV-2 infection resulted in exaggerated intracellular complement activation and destruction of the epithelial integrity in monolayer cultures of primary human airway cells and highly differentiated, pseudostratified, mucus-producing, ciliated respiratory tissue models. SARS-CoV-2-infected 3-dimensional cultures secreted significantly higher levels of C3a and the proinflammatory cytokines IL-6, monocyte chemoattractant protein 1, IL-1α, and RANTES. CONCLUSIONS: Crucially, we illustrate here for the first time that targeting the anaphylotoxin receptors C3a receptor and C5a receptor in nonimmune respiratory cells can prevent intrinsic lung inflammation and tissue damage. This opens up the exciting possibility in the treatment of COVID-19.


Subject(s)
Bronchi/immunology , COVID-19/immunology , Complement Activation , Epithelial Cells/immunology , Receptor, Anaphylatoxin C5a/immunology , Respiratory Mucosa/immunology , SARS-CoV-2/immunology , Bronchi/pathology , Bronchi/virology , COVID-19/pathology , COVID-19/virology , Cell Line , Complement C3/immunology , Cytokines/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Humans , Inflammation/immunology , Inflammation/pathology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology
14.
Immunol Rev ; 302(1): 228-240, 2021 07.
Article in English | MEDLINE | ID: covidwho-1241009

ABSTRACT

The COVID-19 pandemic rapidly spread around the world following the first reports in Wuhan City, China in late 2019. The disease, caused by the novel SARS-CoV-2 virus, is primarily a respiratory condition that can affect numerous other bodily systems including the cardiovascular and gastrointestinal systems. The disease ranges in severity from asymptomatic through to severe acute respiratory distress requiring intensive care treatment and mechanical ventilation, which can lead to respiratory failure and death. It has rapidly become evident that COVID-19 patients can develop features of interstitial pulmonary fibrosis, which in many cases persist for as long as we have thus far been able to follow the patients. Many questions remain about how such fibrotic changes occur within the lung of COVID-19 patients, whether the changes will persist long term or are capable of resolving, and whether post-COVID-19 pulmonary fibrosis has the potential to become progressive, as in other fibrotic lung diseases. This review brings together our existing knowledge on both COVID-19 and pulmonary fibrosis, with a particular focus on lung epithelial cells and fibroblasts, in order to discuss common pathways and processes that may be implicated as we try to answer these important questions in the months and years to come.


Subject(s)
COVID-19/pathology , Epithelial Cells/pathology , Fibroblasts/pathology , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/virology , Respiratory Mucosa/pathology , COVID-19/complications , Humans , SARS-CoV-2
15.
Am J Pathol ; 191(8): 1374-1384, 2021 08.
Article in English | MEDLINE | ID: covidwho-1240148

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) who are critically ill develop vascular complications characterized by thrombosis of small, medium, and large vessels. Dysfunction of the vascular endothelium due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated in the pathogenesis of the COVID-19 vasculopathy. Although initial reports suggested that endothelial injury was caused directly by the virus, recent studies indicate that endothelial cells do not express angiotensin-converting enzyme 2, the receptor that SARS-CoV-2 uses to gain entry into cells, or express it at low levels and are resistant to the infection. These new findings, together with the observation that COVID-19 triggers a cytokine storm capable of injuring the endothelium and disrupting its antithrombogenic properties, favor an indirect mechanism of endothelial injury mediated locally by an augmented inflammatory reaction to infected nonendothelial cells, such as the bronchial and alveolar epithelium, and systemically by the excessive immune response to infection. Herein we review the vascular pathology of COVID-19 and critically discuss the potential mechanisms of endothelial injury in this disease.


Subject(s)
COVID-19/metabolism , Cytokine Release Syndrome/metabolism , Endothelium, Vascular/injuries , Endothelium, Vascular/metabolism , SARS-CoV-2/metabolism , Thrombosis/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Bronchi/metabolism , Bronchi/pathology , COVID-19/complications , COVID-19/pathology , COVID-19/therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/therapy , Endothelium, Vascular/pathology , Humans , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Thrombosis/etiology , Thrombosis/pathology , Thrombosis/therapy
16.
Front Immunol ; 12: 653969, 2021.
Article in English | MEDLINE | ID: covidwho-1190317

ABSTRACT

Under normal physiological conditions, the lung remains an oxygen rich environment. However, prominent regions of hypoxia are a common feature of infected and inflamed tissues and many chronic inflammatory respiratory diseases are associated with mucosal and systemic hypoxia. The airway epithelium represents a key interface with the external environment and is the first line of defense against potentially harmful agents including respiratory pathogens. The protective arsenal of the airway epithelium is provided in the form of physical barriers, and the production of an array of antimicrobial host defense molecules, proinflammatory cytokines and chemokines, in response to activation by receptors. Dysregulation of the airway epithelial innate immune response is associated with a compromised immunity and chronic inflammation of the lung. An increasing body of evidence indicates a distinct role for hypoxia in the dysfunction of the airway epithelium and in the responses of both innate immunity and of respiratory pathogens. Here we review the current evidence around the role of tissue hypoxia in modulating the host-pathogen interaction at the airway epithelium. Furthermore, we highlight the work needed to delineate the role of tissue hypoxia in the pathophysiology of chronic inflammatory lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease in addition to novel respiratory diseases such as COVID-19. Elucidating the molecular mechanisms underlying the epithelial-pathogen interactions in the setting of hypoxia will enable better understanding of persistent infections and complex disease processes in chronic inflammatory lung diseases and may aid the identification of novel therapeutic targets and strategies.


Subject(s)
COVID-19/immunology , Host-Pathogen Interactions/immunology , Hypoxia/immunology , Lung/immunology , Respiratory Mucosa/immunology , SARS-CoV-2/physiology , COVID-19/pathology , Humans , Hypoxia/pathology , Lung/blood supply , Lung/pathology , Respiratory Mucosa/blood supply , Respiratory Mucosa/pathology
17.
Eur J Clin Invest ; 50(7): e13259, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-1084256

ABSTRACT

BACKGROUND: The clinical features of COVID-19 pneumonia range from a mild illness to patients with a very severe illness with acute hypoxemic respiratory failure requiring ventilation and Intensive Care Unit admission. AIMS: To provide a brief overview of the existing evidence for such differences in host response and outcome, and generate hypotheses for divergent patterns and avenues for future research, by highlighting similarities and differences in histopathological appearance between COVID-19 and influenza as well as previous coronavirus outbreaks, and by discussing predisposition through genetics and underlying disease. MATERIALS AND METHOD: We assessed the available early literature for histopathological patterns of COVID-19 pneumonia and underlying risk factors. RESULT: The histopathological spectrum of COVID-19 pneumonia includes variable patterns of epithelial damage, vascular complications, fibrosis and inflammation. Risk factors for a fatal disease include older age, respiratory disease, diabetes mellitus, obesity and hypertension. DISCUSSION: While some risk factors and their potential role in COVID-19 pneumonia are increasingly recognized, little is known about the mechanisms behind episodes of sudden deterioration or the infrequent idiosyncratic clinical demise in otherwise healthy and young subjects. CONCLUSION: The answer to many of the remaining questions regarding COVID-19 pneumonia pathogenesis may in time be provided by genotyping as well careful clinical, serological, radiological and histopathological phenotyping.


Subject(s)
Coronavirus Infections/pathology , Edema/pathology , Inflammation/pathology , Pneumonia, Viral/pathology , Respiratory Mucosa/pathology , Thrombosis/pathology , Age Factors , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Diabetes Mellitus/epidemiology , Fibrosis , Genetic Predisposition to Disease , HLA Antigens/genetics , Humans , Hypertension/epidemiology , Inflammation/immunology , Influenza, Human/pathology , Obesity/epidemiology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Polymorphism, Genetic , Respiratory Mucosa/immunology , Respiratory System/pathology , Risk Factors , SARS-CoV-2 , Serine Endopeptidases/genetics , Severe Acute Respiratory Syndrome/pathology
18.
J Intern Med ; 289(6): 861-872, 2021 06.
Article in English | MEDLINE | ID: covidwho-1013004

ABSTRACT

BACKGROUND: Since the first observations of patients with COVID-19, significant hypoalbuminaemia was detected. Its causes have not been investigated yet. OBJECTIVE: We hypothesized that pulmonary capillary leakage affects the severity of respiratory failure, causing a shift of fluids and proteins through the epithelial-endothelial barrier. METHODS: One hundred seventy-four COVID-19 patients with respiratory symptoms, 92 admitted to the intermediate medicine ward (IMW) and 82 to the intensive care unit (ICU) at Luigi Sacco Hospital in Milan, were studied. RESULTS: Baseline characteristics at admission were considered. Proteins, interleukin 8 (IL-8) and interleukin 10 (IL-10) in bronchoalveolar lavage fluid (BALF) were analysed in 26 ICU patients. In addition, ten autopsy ultrastructural lung studies were performed in patients with COVID-19 and compared with postmortem findings in a control group (bacterial pneumonia-ARDS and H1N1-ARDS). ICU patients had lower serum albumin than IMW patients [20 (18-23) vs 28 (24-33) g L-1 , P < 0.001]. Serum albumin was lower in more compromised groups (lower PaO2 -to-FiO2 ratio and worst chest X-ray findings) and was associated with 30 days of probability of survival. Protein concentration was correlated with IL-8 and IL-10 levels in BALF. Electron microscopy examinations of eight out of ten COVID-19 lung tissues showed loosening of junctional complexes, quantitatively more pronounced than in controls, and direct viral infection of type 2 pneumocytes and endothelial cells. CONCLUSION: Hypoalbuminaemia may serve as severity marker of epithelial-endothelial damage in patients with COVID-19. There are clues that pulmonary capillary leak syndrome plays a key role in the pathogenesis of COVID-19 and might be a potential therapeutic target.


Subject(s)
COVID-19/complications , Hypoalbuminemia/etiology , Aged , Bronchoalveolar Lavage Fluid/chemistry , COVID-19/blood , Capillary Leak Syndrome/etiology , Endothelium, Vascular/pathology , Female , Humans , Interleukin-10/analysis , Interleukin-8/analysis , Lung/diagnostic imaging , Lung/pathology , Male , Middle Aged , Respiratory Mucosa/pathology , Retrospective Studies , Ultrasonography
19.
PLoS Pathog ; 17(1): e1009153, 2021 01.
Article in English | MEDLINE | ID: covidwho-1006381

ABSTRACT

Neuropilin-1 (NRP-1), a member of a family of signaling proteins, was shown to serve as an entry factor and potentiate SARS Coronavirus 2 (SARS-CoV-2) infectivity in vitro. This cell surface receptor with its disseminated expression is important in angiogenesis, tumor progression, viral entry, axonal guidance, and immune function. NRP-1 is implicated in several aspects of a SARS-CoV-2 infection including possible spread through the olfactory bulb and into the central nervous system and increased NRP-1 RNA expression in lungs of severe Coronavirus Disease 2019 (COVID-19). Up-regulation of NRP-1 protein in diabetic kidney cells hint at its importance in a population at risk of severe COVID-19. Involvement of NRP-1 in immune function is compelling, given the role of an exaggerated immune response in disease severity and deaths due to COVID-19. NRP-1 has been suggested to be an immune checkpoint of T cell memory. It is unknown whether involvement and up-regulation of NRP-1 in COVID-19 may translate into disease outcome and long-term consequences, including possible immune dysfunction. It is prudent to further research NRP-1 and its possibility of serving as a therapeutic target in SARS-CoV-2 infections. We anticipate that widespread expression, abundance in the respiratory and olfactory epithelium, and the functionalities of NRP-1 factor into the multiple systemic effects of COVID-19 and challenges we face in management of disease and potential long-term sequelae.


Subject(s)
COVID-19/immunology , Neuropilin-1/immunology , SARS-CoV-2/immunology , Virus Internalization , COVID-19/pathology , Diabetic Nephropathies/immunology , Diabetic Nephropathies/pathology , Diabetic Nephropathies/virology , Humans , Immunologic Memory , Olfactory Bulb/immunology , Olfactory Bulb/pathology , Olfactory Bulb/virology , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , T-Lymphocytes/immunology , T-Lymphocytes/pathology
20.
Lancet ; 396(10247): 320-332, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-981695

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of an ongoing pandemic, with increasing deaths worldwide. To date, documentation of the histopathological features in fatal cases of the disease caused by SARS-CoV-2 (COVID-19) has been scarce due to sparse autopsy performance and incomplete organ sampling. We aimed to provide a clinicopathological report of severe COVID-19 cases by documenting histopathological changes and evidence of SARS-CoV-2 tissue tropism. METHODS: In this case series, patients with a positive antemortem or post-mortem SARS-CoV-2 result were considered eligible for enrolment. Post-mortem examinations were done on 14 people who died with COVID-19 at the King County Medical Examiner's Office (Seattle, WA, USA) and Snohomish County Medical Examiner's Office (Everett, WA, USA) in negative-pressure isolation suites during February and March, 2020. Clinical and laboratory data were reviewed. Tissue examination was done by light microscopy, immunohistochemistry, electron microscopy, and quantitative RT-PCR. FINDINGS: The median age of our cohort was 73·5 years (range 42-84; IQR 67·5-77·25). All patients had clinically significant comorbidities, the most common being hypertension, chronic kidney disease, obstructive sleep apnoea, and metabolic disease including diabetes and obesity. The major pulmonary finding was diffuse alveolar damage in the acute or organising phases, with five patients showing focal pulmonary microthrombi. Coronavirus-like particles were detected in the respiratory system, kidney, and gastrointestinal tract. Lymphocytic myocarditis was observed in one patient with viral RNA detected in the tissue. INTERPRETATION: The primary pathology observed in our cohort was diffuse alveolar damage, with virus located in the pneumocytes and tracheal epithelium. Microthrombi, where observed, were scarce and endotheliitis was not identified. Although other non-pulmonary organs showed susceptibility to infection, their contribution to the pathogenesis of SARS-CoV-2 infection requires further examination. FUNDING: None.


Subject(s)
Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Adult , Aged , Aged, 80 and over , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/ultrastructure , Alveolar Epithelial Cells/virology , Autopsy , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Female , Gastrointestinal Tract/pathology , Gastrointestinal Tract/ultrastructure , Gastrointestinal Tract/virology , Heart/virology , Humans , Kidney/pathology , Kidney/ultrastructure , Kidney/virology , Liver/pathology , Liver/ultrastructure , Liver/virology , Male , Middle Aged , Myocardium/pathology , Myocardium/ultrastructure , Pandemics , Pneumonia, Viral/epidemiology , Pulmonary Alveoli/pathology , Pulmonary Alveoli/ultrastructure , Respiratory Mucosa/pathology , Respiratory Mucosa/ultrastructure , Respiratory Mucosa/virology , SARS-CoV-2 , Spleen/pathology , Spleen/ultrastructure , Spleen/virology , Thrombosis/pathology , Trachea/pathology , Trachea/ultrastructure , Trachea/virology , Washington/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL